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ABSTRACT: We consider twist-3 operators in the s[(2) sector of N' =4 SYM built out of
three scalar fields with derivatives. We extract from the Bethe Ansatz equations of this
sector the exact lowest anomalous dimension 7(s) of scaling fields for several values of the
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1. Introduction

Integrability in QCD is an old intriguing issue (see [l] for a recent review). Certainly,
QCD is not an integrable quantum field theory. However, in the planar multicolor ’t
Hooft limit, new special features emerge due to the simplified dynamics. For instance, it is
known that the one-loop renormalization group flow of certain sets of composite operators
is associated with integrable XXX lattice Hamiltonians with s[(2) spin symmetry [f]. The
evolution time in the integrable model is the (logarithm of the) renormalization scale at
which we define the composite operators. The integrable Hamiltonian is identified with the
quantum dilatation operator. Its eigenvalues are the anomalous dimensions of the scaling
fields. Several explicit examples can be found in [§-§, Ld].

Inspired by the parallel developments of AdS/CFT duality [d], the integrability proper-
ties of large N gauge theories have been deeply investigated in supersymmetric Yang-Mills
theories. In this paper, we shall work in the context of the maximally supersymmetric
N = 4 super Yang-Mills theory which is UV finite and superconformally invariant at the



quantum level. In the analysis, we shall always understand the planar limit. Due to the
possible interdisciplinary interest of our investigation, we briefly overview the main logical
developments of integrability in N' =4 SYM.

The first positive results are described in the seminal paper [[L1]]. The one loop dilata-
tion operator is computed in a closed s0(6) sector of scalar operators. It can be identified
with the Hamiltonian of an integrable lattice model. Soon, the integrable structure could
be extended to the full set of psu(2,2|4) operators. Also, it appeared clear that integrability
could work beyond one loop, with the coupling constant being a deformation parameter
for the superconformal algebra representation [[12—[L5].

These investigations suggested that N' =4 SYM could admit an all loop solution for
the renormalization flow of its composite operators. The reason for this peculiar internal
integrability is the strong constraint imposed by the unbroken superconformal symmetry.
Also, in agreement with AdS/CFT duality, the symmetry is further enhanced at tree level
to the higher spin algebra hs(2,2|4). Its multiplets obey intricate recombination rules under
the interacting subalgebra psu(2,2[4) [I§].

The analysis of the dilatation operators was further extended in [[[7], computing the
three loop dilatation operator in the su(2|3) subsector of the theory. This remarkable
achievement has been obtained algebraically by exploiting the superconformal invariance
instead of direct Feynman diagram calculations. The su(2|3) sector includes closed smaller
subsectors like the bosonic su(2) and the fermionic su(1]1), but not the non-compact s((2)
containing the twist operators.

As is common in the context of integrable models, the basic object is not the Hamil-
tonian, but the S-matrix for elementary excitations. Integrability means that scattering
processes are elastic and factorized. To a large extent, the two body scattering matrix
allows to reconstruct the full dynamics. Once we know the S-matrix, we can write down
Bethe Ansatz equations that determine the allowed quantum numbers and momenta of the
elementary excitations. From the solutions of these equations we extract the spectrum of
the integrable Hamiltonian, i.e. the anomalous dimensions in the gauge theory.

Therefore, as soon as integrability was recognized as an essential feature of N' = 4 SYM,
a new investigation route started with the aim of computing higher order Bethe Ansatz
equations bypassing the explicit construction of the dilatation operator. For instance, a
remarkable result was obtained in [[[§] where the three loop Bethe Ansatz equations were
determined in the su(2) C su(2|3) bosonic sector.

Here and in the following, the Bethe Ansatz equations that we shall discuss will al-
ways be asymptotic. This means that their perturbative expansion predicts the correct
anomalous dimension of the operator @ up to a finite loop order O(g?"). The number L
depends in a controlled way on the number of elementary fields in . The dilatation op-
erator, seen as a spin chain Hamiltonian, contains long-range interactions up to a distance
growing with the perturbative order. The number of fields in O determines the length of
the spin chain and, beyond a certain order, wrapping problems appear invalidating the
Bethe Ansatz equations.

Due the simplicity of the su(2) sector, it was possible to compute the three loop dilata-
tion operator and its Bethe Ansatz equations at the five loops level [[J]. This remarkable



result was also confirmed for many operators by standard Feynman diagram calculations at
three loops [R0]. The Bethe Ansatz and S-matrix approach culminated in the work [R1]]. A
clever combination of gauge/string theory arguments allowed to conjecture the three loop
Bethe Ansatz equations for the other rank-1 closed subsectors su(1|1) and sl(2) without
computing the dilatation operator.

From our point of view, the paper [R] is crucial because it started the investigation of
the non-compact sl(2) sector. As a check of the proposed Bethe Ansatz equations, a few
explicit two loops calculation have been performed in [@] using superspace perturbation
theory. Also, the two loop dilatation operator has been constructed algebraically in the
su(1,1]2) D sl(2) sector [R3]. In all cases, the Bethe equations of 1] were fully confirmed.

The three loop S-matrix in the s[(2) sector is an important bridge toward QCD. Based
on three loop QCD calculations [24] and inspired by one and two loop results in N = 4
SYM [R5, Rf], Kotikov, Lipatov, Onishchenko and Velizhanin (KLOV) conjectured a three
loop prediction for the anomalous dimension of N/ = 4 twist-2 superconformal operators
at generic spin in [P4]. The prediction is based on what is now called the mazimum
transcendentality principle.

This prediction is perfectly matched by the perturbative expansion of the s[(2) Bethe
Ansatz equations. Notice that at twist-2 all conformal operators fall in a single supermul-
tiplet (see [R§-Bd]). With more complicated operators this is not necessarily true. For
instance, the paper [BI] studies the two loop dilatation in N' = 1,2,4 SYM for Wilson
operators with 3 quark/gaugino fields and derivatives. This is not the sl(2) sector that we
are discussing and that is built with the holomorphic scalar fields of N' =4 SYM.

As a technical remark, the agreement between R1] and the KLOV prediction is some-
what beyond the regime of applicability of the Bethe equations as it would follow from
wrapping considerations. This subtle point is related to superconformal symmetry as ex-
plained in the later works [B3, BJ]. Wrapping problems are expected to appear at L + 2
loop order for twist-L operators.

Soon, it was realized that the wrapping barrier could be overcome by considering the
large spin limit of anomalous dimensions. In this limit, the leading contribution to the
smallest anomalous dimension scales logarithmically with the spin s and is universal with
respect to twist [B4]. The coefficient of log s is a non-trivial function of the coupling, the
cusp anomalous dimension (a.k.a. scaling function) [B3-B7).

Since wrapping problems do not affect the calculation of the scaling function, a possi-
bility opened for its all-loop calculation from the Bethe Ansatz equations. The first attempt
in this direction is described in [Bg]. In that work, the s[(2) Bethe equations are put on
a more solid basis, by a field theoretical calculation of the two loop dilatation operator.
This calculation confirmed that it is diagonalized by the Bethe Ansatz equations of [R].
Then, an integral equation was proposed to determine at all loops the scaling function,
the Eden-Staudacher (ES) equation. The four loop ES prediction is in agreement with the
maximum transcendentality principle. However, it is potentially sensitive to the effects of
a missing crucial piece in the Bethe Ansatz analysis, namely the dressing factor [BY. It
is an Abelian phase which is not constrained by superconformal symmetry and enters the
perturbative expansion of anomalous dimensions precisely at four loops.



Although, at first, the appearance of the dressing factor is rather discouraging,
AdS/CFT duality comes to rescue. The N' = 4 SYM theory has a AdS5 x S° string
counterpart which is also classically integrable (and to some extent also at the quantum
level) and where an all-order strong coupling expansion for the dressing is known. This is
made possible by a combination of semiclassical string calculations and string integrability
considerations, like crossing symmetry [10—[5].

By an impressive insight, Beisert, Eden and Staudacher proposed in [if] an all-order
weak-coupling expansion of the dressing phase. The modified integral equation for the
scaling function now predicted a four loop contribution in analytical form still in agreement
with the KLOV maximum transcendentality principle, but quantitatively different than
the prediction of [BY]. In a synchronized but independent fashion, a remarkable four-
loop Feynman diagram calculation appeared [[£7] providing a numerical expression for this
contribution in full agreement with the result of [[£f]. The numerical agreement was later
significantly improved in [4g].

More recently, there have been additional important developments aimed at a deeper
understanding of the dressing factor [[9—-f2|. In this paper, we shall dwell on the results
of [Ig] to compute certain 4 loop contributions.

A complementary approach to integrable systems (closely related to the Bethe Ansatz)
is based on the Baxter Q-operator [53]. In this framework, the two loop dilatation operator
in ' = 2,4 SYM for Wilson operators with scalars and derivatives (our s[(2) sector)
as well as the two loop Baxter operator are computed in [f4]. The all-loop asymptotic
generalization of the Baxter equation in the same sector also appeared in [p§]. All-loop

(]

extensions to the larger s[(2|1) sector have been recently published in [p4].

In this paper, we keep working in the sl(2) sector of N' =4 SYM and study twist-3
operators extracting from the Bethe Ansatz equations the (lowest) anomalous dimension.
For these operators, the Bethe Ansatz equations plus dressing are expected to be reliable up
to 4 loops, even at finite spin. We shall show that, for even spin, the minimal anomalous
dimension is associated with an unpaired operator and the non-dressing part of it has
rational contributions up to 4 loops.

We shall be able to provide closed expressions for the various perturbative contributions
at finite spin s, including the dressing part at four loops. As a non trivial check, we shall
recover the universal four loop cusp anomalous dimension.

of the main integrability facts in A/ = 4 SYM with some discussion of the links with QCD
integrability. Section (B) describes the relevant Bethe equations. Section (f) is devoted

The detailed plan of the paper is as follows. Section ([]) is devoted to a brief overview

to the detailed presentation of our analysis on the twist-3 operators. A self-contained
appendix contains some technical information about nested harmonic sums, which are the
basic element entering our proposed closed formulae for anomalous dimensions at finite
spin.



2. The sl(2) sector of N =4 SYM

2.1 The Bethe Ansatz equations

The s[(2) sector of planar N' =4 SYM contains single trace states which are linear combi-

nations of the basic operators
T{(D*Z) ---(D°* Z)}, s1+---+8L=s5, (2.1)

where Z is one of the three complex scalar fields and D is a light-cone covariant derivative.
The numbers {s;} are non-negative integers and s is the total spin. The number L of Z
fields is the twist of the operator, i.e. the classical dimension minus the spin. The subsector
of states with fixed spin and twist is perturbatively closed under renormalization mixing.

At one-loop, the dilatation operator in this sector maps to an integrable spin chain
with L spins transforming according to the s = —1 infinite dimensional s[(2) represen-
tation [[L3]. Beyond one loop, the work [R1] proposed asymptotic all-order Bethe Ansatz
equations. As a check, a few explicit two loops calculation have been performed in [@]
using superspace perturbation theory. Also, the two loop dilatation operator has been
constructed algebraically in the su(1,1|2) D sl(2) sector [2J]. It has also been evaluated
in the sl(2) by Feynman diagram calculations in [Bg. In all cases, the Bethe equations
of [R1] were confirmed. Wrapping problems are delayed by supersymmetry and appear at
L +2 loop order for twist-L operators B3, BJ] (also, N. Beisert and M. Staudacher, private
communication).

The anomalous dimensions of scaling combinations of states eq. (R.1) are the eigenval-
ues v1(s; g) of the dilatation operator/integrable Hamiltonian where our definition for the
planar coupling is

2 _ Fyu N
872 7

where N is the number of colors. The coupling g is kept fixed as N — oo. These anomalous

(2.2)

dimensions 77, (s;g) are obtained by solving perturbatively the Bethe Ansatz equations,
provided we are in the wrapping-free cases.
The Bethe Ansatz equations determine s real Bethe roots {uy}1<i<s and read

P
+\ L 5 + +o.— )
T X, —x) 2x] x
k)= i - st o=z ukil , (2.3)
z R g* k 2
k i#k "k 71— —= T
kaxj

where we have defined the maps

x(u):g<1+ 1—@>, u(x):x+g—2. (2.4)

The relevant solutions of eq. (R.3) are those obeying the constraint [[;_;(z} /z;) = 1
needed to project onto cyclic states associated with single-trace operators in the gauge



theory. Given a solution of Bethe Ansatz equations, we obtain the anomalous dimension

1(s9) = ¢ g (é - x%) . (2.5)

(2

from the formula

Often, the Bethe Ansatz equations are presented in a different, equivalent form, more
suitable for our later discussion. We introduce the Bethe momenta {p;}i<i<s which are
related to the Bethe roots by the transformations

p(u) = —ilog j_L—EZ;, (2.6)

1
u(p) = §c0t§,/1+89281n2§. (2.7)

The 2t combinations appearing in the Bethe equations have the following expression in
terms of the p;,

ez . 9D
zE(p) = Tom (1 + /1 + 8 g2 sin? 5) . (2.8)

Finally, the anomalous dimension reads

’VL(SEQ):i<\/1+8925in2%—1>- (2.9)

k=1

Notice that in this form, the anomalous dimension is obtained as a sum of single quasi-
particle energies with a definite dispersion relation.

The Bethe equations admit several solutions that describe different scaling operators.
The different solutions are selected by taking the logarithm of the Bethe equations and
choosing a determination for the branch. This is known as choosing the mode/Bethe
numbers of the state. In the following analysis we shall study the minimal anomalous
dimension, i.e. the ground state of the integrable spin chain, for reasons that shall become
clear in the discussion. The solution describing the ground state has known mode numbers
at any twist [BY].

Starting from the 4-loop level, the Bethe equations egs. (R.3) must be modified includ-
ing a universal Abelian dressing phase. In other words, beyond three loops, the correct

equations are

L9
+\ L 5 = _ ot .-

(xli> - xi—x]_ k2] 62“9]6]’ (2'10)
k AR T o I

with J5; = O(g®). The general perturbative expansion of the dressing phase takes the form

2\ Ttrtp
ﬁkj=§j§j§j<%> B (4 (0 ars1420(p) — (k< 5)], (2.11)

r>2v>0 p>v



where the higher order charges ¢,(p) have the expression [[[9]

r—1
1 / 2 2_
2sin (r2 p) 1+ 8¢?sin (2.12)

r—1 2 g2 Sln§

q-(p) =

with the non trivial coefficient being ﬁé?. # 0.

The proposed formula for the coefficients B(gcg is given in [f6] (see also [Bg, b9 for
related explorations) and reads

(rdvtp) _ o904 r+u+1(7“—1)(7“+21/) 2p+1 2pu+1 9 1 213
Brr+1+2u ( ) 2+ 1 p—r—v+1 w—v C(M+ )7 ( )

and zero if y —r —v+1 < 0. In particular, for the leading order 4-loop correction we have

20 = B(a5 (o) 4y (p;) — a5 () &5 (r)) 8° + O (%), (2.14)
¢t (p) =4 smﬂ; (2.15)
¢’ (p) =4 sian sinp, (2.16)
and
52 3 =40, B = (s (2.17)

2.2 Extracting the perturbative anomalous dimensions, the twist-2 case

Let us fix the twist. For a given spin, we can start by solving numerically the one-loop
Bethe Ansatz equations (see later for more analytical information on this step). Then, it is
straightforward to work out the perturbative expansion of the all-order equations. In this
way we obtain numerical values for the various loop contributions to

=5 (s) g (2.18)

n>1

If these coefficients are rational, we can identify them unambiguously by working with a
very large number of digits.

Actually, in many integrable systems, there is an alternative approach based on the
@ Baxter operator [5J]. One build a polynomial Q(u) whose roots are the Bethe roots.
This polynomial satisfies a recurrence equation that determines it completely, once the
quantum numbers of the desired state are chosen. From the (analytical) knowledge of Q(u),
it is possible to obtain the Hamiltonian eigenvalues without resorting to finite precision
numerical calculations.

At twist-2, the one loop Baxter operator is known in closed form and the Baxter
equation is also known up to three loops. The Bethe Ansatz and Baxter method of course
agree as we checked up to spin s = 68. The resulting anomalous dimensions agrees with



the KLOV three loop prediction
'Yéls) =451, (2.19)
() — _4(S3+935-28 25 (Sy+ 5
V2,5 = 3+0-3 —2,1+ 251 ( 2+ —2) )

+6(S_41+S-32+S-23) —12(S_311+S—212+52271)
— (SQ + QS%) (3 S_3+ 53— 25_271) -5 (8 S_4+ S%Q

+ 48,8 5+252+38,—125 51 —10S_95 + 16 5,271,1)) ,

2§ = ~8(2558 — 55— 25 585~ 35 5+ 245 111

In the above expressions, all the S functions are harmonic functions (see appendix A)
evaluated at the argument s, the spin

Sa = Sa(s)- (2.20)

This check is not surprising and extend the checks already performed in [21].

3. The sl(2) sector at twist-3

The same approach can be applied to the twist-3 case. Here, the one loop anomalous
dimension vél)(s) is known from the analysis of [[[4] (see also some conjectures in [[If]). In
particular, for even spin, the ground state of the integrable Hamiltonian is an unpaired
state.

At twist-3, the Bethe equations are believed to be reliable up to four loops. This is
beyond the range of applicability of the known Baxter equation that stops at three loops.
So, we have computed 'y§1’2’3)(s) by both methods up to s = 68 and ’y§4)(s) in the same
range by the Bethe equations only.

This means that we have computed vén)(s) forn =1,2,3,4 and s < 70 in analytical
form as rational numbers plus, at four loop, a transcendental dressing contribution. The
limit s < 70 is fixed by computer limitations that appear when the result is sought in
analytical form. At s = 68 and four loops we need several thousands of digits. Of course,
if a numerical result is enough, it is possible to push quite further the calculation as we
shall discuss later.

In the following sections, we shall first present new exact results for the twist-3 Baxter

operator at one loop, as well as all the details of the Baxter three loop calculation.

3.1 The one-loop Baxter operator at twist-3

We follow the notation of [34]. The one-loop Baxter equation at twist-3 reads

(+2) @i+ (u-1) Qo0 =t @, @)

where

ta(u) = 2u” + gau + g, (3.2)

Q2:—<8+;> <s+%>—%. (3.3)



Here, s is the (even) spin. The Baxter operator Q(u) is a polynomial of degree s

Qs(u) = anu", (34)
n=0

whose roots are the Bethe roots. Replacing ()3 in the Baxter equation we obtain a homo-
geneous linear problem in the coefficients {a,}. The parameter g3 is a quantum number.
It appears in the linear problem as an eigenvalue. For the lowest state, g3 = 0. Also, the

Baxter polynomial turns out to be even under © — —u.

The eigenvector associated with g3 = 0 determines {a, } and hence Q3 up to an irrel-
evant scaling factor. Given the roots {u,} of the Baxter polynomial

Qa(u) =N - ] (u = un), (3.5)
n=1

we can compute the one-loop anomalous dimension by the formula

SROEDY U%le =2Q3 <—%> : (3.6)

n=1

Notice that the last expression does not require the knowledge of {u,}, but just Q3(u).

For example, at s = 2 we find
1
Qs(w) ~ Qu+D)2u—1),  u=zx3 %)@ =4 (3.7)
For s = 4 we find

3
Qs(u) ~ 11 — 7202 +48u*,  w=+ 1tz 75 (4) = 6. (3.8)

Now, with some trial and error and guided by a comment about Wilson polynomials in [B4],
we found the following closed solution to the Baxter equation

s S 1 1
ss L1
Qs(w) =N B | 22 Thg iy i) (3.9)
11,1
Then, one obtains
: L1,1-2242
o104 (-5) = () o (1 E) <o
=2 —— ) = —+1 F: 2 2:1|=---=45;(=). (3.10
e =204 (~5) =5 (5+ 43< 2 ,> (2). o)

This result is new and is in perfect agreement with the empirical conjecture of [[[4].



3.2 The three loop Baxter equation at twist-3

The Baxter equation at twist-3 valid up to three loops is described in [f4]. Let Q(u) be
the Baxter polynomial. For simplicity, we omit the twist label. @) can be loop expanded
in the form

Q) =QVw) +¢* QW (w) +¢' Q¥ (w) +--- . (3.11)
The polynomial Q¥ (u) has degree s and is Q") = Q3 defined in eq. (B.g). The polynomials
QW) (u), k = 1,2 have degree s — 2 and, for the ground state, are also even under u — —u.

Hence, they have the general form

s/2—1
QW (u) = > P (3.12)
n=0

The three loop Baxter equation reads

AL [m (u + %)} Qu+1i)+A_ [m (u — 5)} Qu— i) = t(u) Q(u), (3.13)

where we have defined again

u 2 g2
and
g’ g'
Ax(z) = 2’ exp {——(log Q) ri—7 [(bg Q(2))]_: +w(log Q(z));”:ii} } (3.15)
T 2 4z 2 2
t(u) = VAL (w(w) A—(z(u)) |2+ AR (3.16)
2 (a(u))
The charges g, have a weak-coupling expansion that for the ground state is
3 1\ 3 < on
P(g9) = - <s+§> <s—|—§> _Z+nzlq2’ng , (3.17)
as(g9) =0, (3.18)
9a(9) =D ang™", (3.19)
n=1
an(9) =0, n>4. (3.20)

Given the (unique polynomial) solution Q(u) of the Baxter equation, the 3-loop anomalous
dimension is given by the formula

4 6
. g g
ralsig) = 2i { ¢ (08 QY + 7 (o8 QYL + 55 (g Q) + O™}
(3.21)
where we exploited the parity invariance of (). Notice that the above formula must be

further expanded in g2 since the polynomial @ contains the coupling g.

,10,



We did not find an analytical formula for the higher Baxter polynomials Q) k = 2, 3.
However, it is straightforward to compute them for each value of the spin s.
For example, at s = 2 we find

1 5
Q= 1(4u2—1)—192+0'g4, (3.22)
3(2) =46 —6g" + 1765 +--- . (3.23)
At s =4,
Q::ihusu4—72u2+11)—93008u2—4n-+gi@6u2+5@
48 24 16 ’
39 957
1(4) = 69" =o'+ 50"+ (3.24)
At s =6,
1 6 4 2 g9 4 2
Q = —(320u® — 1520 u* + 1292 u? — 153) — =— (8400 u* — 17928 u? + 4357) +
320 800
3g* 4 2
+ 51000 (178000 u” + 325448 u? — 359587),
22 443 303115
6) = 222 _ 23 4 6 ... 3.25
13(60) = 59"~ 550+ e g (3.25)

3.3 The proposed four loop anomalous dimension at twist-3
(n)

Using the methods described in the previous sections, we obtained the coefficients v3 7 (s)
as rational numbers for even s < 70, plus a transcendental term at four loop coming from
the dressing to be discussed below, separately.

Is it possible to predict a closed formula for the coefficients as functions of s7 Certainly,
one needs some inspiration to convert the problem into a well-posed one. We propose the
following claim guided by several numerical explorations:

Twist-3 transcendentality principle: The expression of wén)(s) 1s obtained as a sum
of transcendentality 2n — 1 (products of ) nested harmonic sums with positive indices and
argument s/2. For n = 4 the same holds with the dressing contribution being (3 times a
transcendentality 4 combination.

Counting the number of possible harmonic sums (see appendix (A)), one sees that this
principle combined with the s < 70 results fixes the three loop anomalous dimension. One
finds the remarkably simple expressions

ngl) 451 ’
7P = ~2(85+2815) (3.26)
W = 555 +6955 — 85511 +4541 — 4553+ 51 (455 +255+8551),

with all S, functions are evaluated at the argument s/2, i.e. half the (even) spin

Sa = Sa (;) . (3.27)

— 11 —



The argument s/2 is not surprising as we know from the one-loop analysis.
At four loops, the anomalous dimension has two contributions

7&4) _ 7§47no dressing) + ,Y§4,dressing). (328)

The contribution from the dressing is included in the Bethe equations according to eq. (2.12)
of [ig]. The expression for Wéfl;dressmg) is easily found by assuming that § has transcenden-

tality 3. The current Ansatz is 8 = (3. Applying our principle, one fixes

W§4,dressing) =835 Ss. (3.29)

The rational part 'y§4’n° dressing) 2 nnot be fixed by the principle since the number of inde-

pendent positively indexed with transcendentality 7 is 64 and we have only 34 spin values
available. However, with some trial and error, we obtained the following simple formula

pine dressing) % S7+ 7816+ 1555— 5854 — 29543 — 21559 — 5561 (3.30)
—4081,15 — 325124 +24 5133+ 325142 — 325214 + 205223
+40S5232 + 45241 +245313+445322+245331 + 365412+ 365421
+24 5511 +8051,1,14 — 16 511,32 + 3251141 — 2451222 + 1651231
—24 51312 — 2451321 — 2451411 —2452122+1652131 — 2452212
—2459991 — 2482311 — 2453112 — 2453121
—24 53211 — 245411, — 64511131

This formula is minimal in the sense that it is the only solution with coefficients having
2 as the largest denominator. Notice that there are no solutions with integer coefficients.
Egs. (B:2d), (B-29) and (B.30) are the main result of this paper.

Now, given the above formulas, one can give up the goal of obtaining ’yzgn)(s) as exact
rational numbers. Working with a moderate precision it is possible to go quite further in
the spin. We computed the coefficients 'y:gn)(s) with 200 digits accuracy up to s = 300.
The result can be compared with the guessed formulae above. The equality is perfect for
all digits ! This means that the proposed 7?()4) is actually the only solution compatible with
our twist-3 principle. Also, at three loops, one could exclude possible weaker forms of the
principle admitting nested harmonic sums with some negative index.

In the next section, we shall test these expression in the large spin limit showing that

they reproduce the four-loop universal cusp anomalous dimension.

3.4 The cusp anomalous dimension

The cusp anomalous dimension I'cysp (g) is defined in the large s limit of the minimal twist-L
anomalous dimension as

YL(8;9) = Tcusp(g) log s + subleading at s — oo, (3.31)
Leusp(g) = > T0 4. (3.32)
n>1
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It is expected to be twist-independent. Its all-loop perturbative expansion is generated
by the Beisert, Eden, Staudacher equation [f]. We shall use it as a non-trivial check
of our finite spin expressions. For completeness, we mention that I'cusp(g) is quite an
interesting object in the context of AdS/CFT duality. From the dual string theory, it is
known at strong coupling at leading and next-to-leading order [6]-[6J]. Checks of this
strong coupling limit have been recently discussed in [p4].

The large spin expansion of nested harmonic sums can be accomplished by the meth-
ods summarized in appendix (A). The calculation is straightforward for the 1, 2, 3 loop
contributions. Using the results from appendix (A.4), we find

1 _
IOk = 4, (3.33)
I\gl)sp = _452(00)7 (334)
Fg’l)sp = 453(00) +2 54(00) + 8 5371(00).
The exact values are
w2 i 1 i
S =(=—, S =(=—, S = — (2= 3.35
2(00) = (o 5 4(00) = (4 90’ 3,1(00) = (4 + 10 ¢ = (3.35)
Collecting, we find the correct result
272 11 7%
Ceusp(9) = 49° — = gt + 5 9° +0(g®). (3.36)

The expansion of the four loop contribution needs some reshuffling. An alternative, equiv-

alent form more suitable to study the large spin expansion turns out to be

n ressin 8
pno dressing) 5 (585 —4851) ST +4(585 — 10850 — 14841 +16S3,01) ST+ (3.37)
—|—(32 S% + 855 .54 + 47 S + 88 .59 53,1 — 64 54,2 + 48 55,1 — 24 5272,2
—104 52,371 + 120 5471,1 —1925311 1) S

sLyty

-2 Sg Sg — 55 Sy — 45372 Sy + 60 5471 Sy — 120 5371,1 Sy

289 1895 256
—7 53 54 — 5 T 753 5371 + 136 54,3 — 24 5572 — 32 56,1 — 64 52,471

+64.5322 4805331 — 805511 + 12852311 — 128 541,11 + 25653 1,1,1,1-

bty dy

In this form, the techniques of appendix (A) are enough to expand at large s the four loop
anomalous dimension. Including the dressing term, the result is

(4) 73 7T6
cusp — _W
With the standard choice 8 = (3, we obtain

+4¢ -84 (3.38)

272 1174 73 76
Teusp(9) =49 — ——g* + 9° - < 530

402 8 1 ... )
3 I + C3>g + (3.39)

It agrees with the analytical prediction by Beisert, Eden and Staudacher [[q] as well as

with the independent numerical prediction of 7] from a remarkable four loop Feynman

diagram computation.
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Notice that eq. (B.3§) comes from many contributions and requires several cancellations
of higher powers of log s. It tests rather severely our 4 loop proposed expression.

The next-to-leading contributions are also interesting and shall be discussed in a forth-
coming publication [f7. Here, for completeness, we quote some of them. The expansion
has the general form

00 k
_ 1 0
v=plogs+) & > " pri log’ 5, (3.40)
k=0 =0
_ 1
5=3 seE. (3.41)

The first terms are
o 2m 4, Nxt o 7370
39 T s 630

+4C§—8BC3> AT
4 L
P00:_2C39 +<§C3_<5> 96+C0n5tant'98+"'a

272 1174 7378 4n?
— 422 A=y 6 et L 4C2 — 88(+ — 2 8 4.,
P10 g 5 9 +< 15 C3>g +< 530 T 3 (3 +4¢5 —86¢3 —2¢5 |g° +

67t

2 4 87 8
pun =0-g"+8yg BRI AR A

Also, we computed

pro = —8¢° +4m% g% + -
32

P33 = 59 T

The coefficient of log s, i.e. p is precisely the cusp anomalous dimension.

4. Conclusions

In summary, we have considered twist-3 operators with spin s in the s[(2) sector of N' =4
SYM built out of three scalar fields with derivatives. We have extracted from the Bethe
Ansatz equations the exact lowest anomalous dimension 7(s) of scaling fields for several
values of even s. Here, eract means in analytical form as a known coeflicient at each loop,
up to the four loop level where wrapping problems invalidate the Bethe equations.

From these results, we have been able to provide closed expressions for the spin depen-
dence of v(s) up to the four loop level and including the contributions from the dressing
phase. The expressions satisfy a rather simple and new transcendentality principle extend-
ing at twist-3 the KLOV idea [R7. As an application, we have computed the large s limit
of v(s) and checked that the four loop universal cusp anomalous dimension is reproduced.

The availability of the full spin dependence allows to test generic features of anomalous
dimensions in conformally invariant planar field theories in the spirit of [63, pg]. More
detailed results on this important topic will appear in a forthcoming publication [57].

From the point of view of integrability, it is very interesting to test the consequences
of the complicated dressing phase eq. (R.11]) at finite spin. Indeed, the only weak-coupling
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test of of the conjectured dressing phase has been the calculation of the cusp anomalous
dimension at infinite s. We consider a relevant result that the leading weak-coupling
contribution from dressing nicely fits the twist-3 transcendentality principle at finite spin.
From this point of view, the choice of twist-3 has been crucial to push wrapping effects
beyond four loops where the dressing first appears.

As a final comment, we remark that twist-3 operators in QCD built out of quarks and
gluon fields have a well-known phenomenological relevance in polarized DIS applications [,
69, BJ]. Here, we have considered the scalar s[(2) sector which is not necessarily related to
the more QCD-like channels. However, we believe that the ideas presented in this paper
will also be useful in other twist-3 sectors, possibly exploiting supersymmetry to partially
connect different channels.

Note added. The calculation of the four loop anomalous dimension of twist-3 operators
in the s[(2) sector appeared independently and simultaneously in the paper [[f{] which also
deals with the twist-2 case where wrapping problems affect the 4 loop prediction. The
agreement of the twist-3 results is complete.
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A. Harmonic sums

We collect in this appendix some useful properties of (nested) Harmonic sums. General

useful references can be found in [p(].

A.1 Definition

For any integer N and multi-index a = (aq,...,ax) € 7F, we define recursively
N
SNy =", (A1)
n=1
N1
Sax(N) =) — Sx(n). (A.2)

3

=1

3

In the following we shall need only the a; > 0 case.

A.2 Some shuffle algebra relations

The product of a simple S, and a nested sum Sy can be written

Sa Sb17~~~,bk = Sa,bl,--wbk + Sb17a7b27---7bk +ot Sb17~~~,bk7a (A.3)

~Satbi,by — Sbr,atba, b = = Sbi,....atby-
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In particular

So Sy = Sap + Spa — a+b- (A.4)

These relations can be used to reduce sums of the form S,...,. One finds for instance

oo = %(Sg + Soa), (A5)
1

Saaa == E(Sg + 3 Sa SZa + 2 53(1)7 (Aﬁ)
1

Soaaa = ﬁ(Sf; + 652 S, +352, + 884534 +654,). (A7)

A.3 Linear relations

Given a particular nested sum Sy, there are linear relations between all the sums
Sar, a' =ra, 7 = permutation, (A.8)

involving also S sums with a smaller number of indices. These linear relations are obtained
from the equations (one for each permutation a’)

Sat Sapal,a,... = shuffle relation eq. (A3). (A.9)

For instance, taking a = (1,1,3) we find

S151,3 = 5113+ 51,13+ 51,31 — 52,3 — S1.4, (A.10)
S1931 = S131 +93,1,1 +53,1,1 — Sa,1 — 53,2, (A.11)
S3511 = S31,1 + 51,31 +51,1,3 — 541 — S1.4- (A.12)

They can be used to obtain two of the three 3-index sums in terms of the third.

A .4 Evaluation of S, at N = oo

We define the generalized, finite N, (-functions

1
Za(N) = > TR (A.13)
nl oo nr
N>ni>ng>-->n>0
The values of Z at N = oo are the multiple zeta functions
Za(00) = Ca. (A.14)

Multiple zeta functions can be reduced in terms of (known) elementary zeta functions. The
relations between Z and S-sums are trivial. For instance

Sa(00) = Cas (A.15)
Sa,b(oo) = Ca,b + <a+b7 (A16)
Sa,b,c(oo) = Ca,b,c + Ca—i—b,c + Ca,b-l—c + Ca—l—b—l—c- (A17)
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The general case is obtained by summing over all possible {, obtained by splitting the
multi-index of S in order-respecting groups and taking the sum within each group. For

instance

Sa,b,c,d(oo) = Ca,b,c,d + Caer,c,d + Ca,bJrc,d + Ca,b,chd + Caer,chd +
+Catbted + Captetd + Catbtetd- (A.18)

Some examples relevant to compute the three loop cusp anomalous dimension are the
following. From

G2 = —% G5 +3(2G3, (A.19)
1
1= 15 G, (A.20)
Ca1 = (31,1 =2C5 — (2(3, (A.21)
we obtain
S53,2(00) = —g G +3C2C3, (A.22)
1 5, =t
S3,1(00) = Gt 756 = =5 (A.23)
Sy1(00) =3 C5 - Cz (3, (A.24)
S31,1(00) = —3 C5 + (2 G (A.25)

A.5 Asymptotic expansions of harmonic sums with positive indices

We first define

N
SP(N Z (A.26)
The following expansions hold (Bj, are Bernoulli’s numbers)
1 By,
51( ) 10gN+’7E+ﬁ—Z2kN2k, (A27)
k>
a—2N -1 2k+a—2'32k
SalN) = Gt SR~ @) ,Z TazEraT @ €Na> 1 (A2)

Taking derivatives with respect to a we obtain immediately expansions for Sc(Lp )(N ).

Multiple (nested) sums S, can be evaluated as follows. Let a = (a1, az,...,a). Sup-
pose that the expansion of Sy, . o, (V) is known. Its general form will always be
Sy Z Cha logpN. (A.29)
Replacing this expansion in N
5= e San (), (A.30)
n=

,17,



we obtain
N

D
Sa= g > % (A.31)

P,q n=1
Usually, this determines the expansion of the sum apart from the constant term. This is
Sa(co) and can be evaluated by the methods discussed in the previous sections. Often, it
is useful to reduce internal sums of the form S,q,.. o with the general formulae that we also

discussed.

A.6 Counting fixed transcendentality terms

Let us consider a given index set a = (aq,...,a,) with a; > 0. The various S, with a’
being a permutation of a are not all independent due to the shuffle-algebra relations. The
number of independent sums is counted by the second Witt’s formula. Suppose that

a=(a-,ab--b-), (A.32)

and let n = nq +n9 + --- + ny. The number of independent sums with this index set, up

to permutations, is

1 (n/d)!
@) =Lly(ny, -, == d , A.
where the Mébius function p(d) is
1, d=1,
wu(d) =< 0, d contains the factor p? with p prime > 1, (A.34)

(—1)%, d is the product of s distinct primes p; > 1.

Up to transcendentality 7, the cases that occur are (all different letters stand for different

numbers)
la) = 0(1) =1, (A.35)
0 a---a )="Ly(n)=0. (A.36)

n>1 terms

(This relation is well known since Sgqq...4 can always be expressed in terms of product of

smaller 5)

1(n+1)!

l(a---ab) :€n+1(1,n)zﬁ T =1, (A.37)
n terms
Caabb) = 4(2,2) = S [p(D =2 4+ p@)=2-| =1 A.38)
L(abc) = ¢ 111—1 3! =2 A.39
(GC)—3(7a)—§m—7 (A.39)
1 5l
14
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Now, let us begin with transcendentality 1. There is a single sum with multiplicity £ =1

Hence, the number of independent positive sums with transcendentality 1 is by = 1.

At transcendentality 2 we have

a:/
11:0
2:1

Hence, the number of independent positive sums with transcendentality 2 is by = 1.

At transcendentality 3 we have

111 :
12 :

[ == TN

Hence, the number of independent positive sums with transcendentality 3 is b3 = 2. From
the same table we can also count the number N3 of (products of) simple sums with total

k-1
Ry, = (” +k > (A.42)

transcendentality 3. Let

be the number of combinations of n objects in groups of k with repetitions. From the table,
we read

N3 = Rb1,3 4+ b1 by + by = 4. (A.43)

At transcendentality 4 we have

1111 :
112 :
13 :
4:
22 :

[ S S G TG o T

Hence, the number of independent positive sums with transcendentality 4 is by = 3.
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At transcendentality 5 we have

11111 :
1112 :
113 :
14 :

122 :
23 :

e = e e = T = =T N

Hence, the number of independent positive sums with transcendentality 5 is b5 = 6. From
the same table we can also count the number N5 of (products of) simple sums with total
transcendentality 5. It is

N5 = Rb175 + Rb1,3 bg + Rb1,2 b3 + b1 b4 + b5 + b1 Rb272 + bg b3 = 16. (A.44)

At transcendentality 6 we have

a :/ a :/
111111 : 0 1122 : 1
11112 : 1 123 : 2
1113 :1 24 1 (A.45)
114 :1 222 : 0
15 1
6 01

Hence, the number of independent positive sums with transcendentality 6 is bg = 9.
At transcendentality 7 we have

a 4
a : /¢

1111111 : 0
1123 : 3

111112 : 1
124 : 2
11113 1 o 1

1114 -1 (A.46)

133 : 1

115 1
34 :1

16 1
223 1

7 1
1222 : 1

11122 2

Hence, the number of independent positive sums with transcendentality 7 is by = 18. The
same counting as before, taking into account the non trivial Ry, » = Ra2 = 3 (i.e. aa, ab
and bb) gives

N7 = 64. (A.47)
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We have computed Ny for the even and odd k up to £ = 11 and checked that

N, = 2F-1, (A.48)

The same counting can be done including sums with one or more negative indices. The
number of sums bf for k=1,...,7 is now

b =2,3,8,18,48,116, 312. (A.49)

Evaluating N, ,jt, the general formula seems to be

Nf =2.31 (A.50)
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